Sarah Heilbronner, Ph.D.

Assistant Professor, Department of Neuroscience

E-MAIL: heilbo028@umn.edu

Research Interests:

Understanding the neurobiology of complex behaviors requires linking diverse methodologies, species, and analytical approaches. The goal of our lab is to use anatomical connectivity and related techniques to help bridge the major divides in neuroscience. Specifically, we perform tract-tracing to understand the neural circuits underpinning motivation and decision-making. We are particularly interested in the medial prefrontal cortex and the posteromedial cortex as critical pieces of the motivation and decision-making circuits. Activations in different portions of these midline regions consistently track subjective value, outcomes, and need for behavioral adjustment. Intriguingly, these areas are also core pieces of the default mode network, a set of highly functionally correlated brain regions consistently deactivated during task performance in humans. A similar network is also present in other species. Thus, the default mode network represents an important circuit for motivation and decision-making that can be interrogated across multiple species.

Specific projects include:

-Leveraging cortical connectivity with conserved subcortical structures to establish circuit-level similarities across species. Ultimately, this process allows us to translate neural results from nonhuman animals to humans, including psychiatric patients.

-Mapping posteromedial cortico-basal ganglia pathways to answer fundamental questions about integration within the default mode network and the striatum.

-Anatomically and functionally mapping “patches” of connectivity (small zones of connectivity that do not cover an entire brain region) within the default mode network.

-Establishing patterns of white matter organization to improve targeting of neuromodulatory interventions for psychiatric and neurological disorders.

My lab website is hheilbronnerlab.umn.edu


Selected Publications:

(For a comprehensive list of recent publications, refer to PubMed, a service provided by the National Library of Medicine.)

  • Hirad A, Bazarian JJ, Garcea FE, Heilbronner SR, Paul D, Hintz E, van Wijngaarden E, Mahon BZ. MRI signatures of midbrain trauma linked to repetitive head hits: A pilot study. (under review).
  • Safadi Z, Grisot G, Jbabdi S, Behrens TEJ, Heilbronner SR, McLaughlin NCR, Mandeville J, Versace A, Phillips ML, Lehman JF, Yendiki A, Haber SN. Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J Neurosci. 2018;38(8):2106-2117.
  • Heilbronner SR, Meyer MAA, Choi EY, Haber SN. How do cortico-striatal projections impact on downstream pallidal circuitry? Brain Struct Funct. 2018 Apr 13. doi: 10.1007/s00429-018-1662-9.
  • Coizet V*, Heilbronner SR*, Carcenac C, Mailly P, Lehman J, Savasta M, David O, Deniau JM, Groenewegen HJ, Haber SN. Organization of the anterior limb of the internal capsule in the rat. J Neurosci. 2017;37(10):2539-2554. *Denotes equal contribution.
  • Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN. (2016). Circuit based cortico-striatal homologies between rat and primate. Biol Psychiatry. 2016;80(7):509-21.
  • Heilbronner SR, Hayden BY. Dorsal anterior cingulate cortex: A bottom-up view. Annu Rev Neurosci. 2016 Jul 8;39:149-70.
  • Heilbronner SR, Hayden BY. The description-experience gap in risky choice in nonhuman primates. Psychon Bull Rev. 2016;23(2):593-600.
  • Heilbronner SR, Haber SN. Frontal cortical and subcortical projections provide a basis for segmenting the cingulum bundle: Implications for neuroimaging and psychiatric disorders. J Neurosci. 2014 Jul 23;34(30):10041-54.
  • Heilbronner SR, Meck WH. Dissociations between interval timing and inter-temporal choice following administration of fluoxetine, cocaine, or methamphetamine. Behav Processes. 2014;101:123-34.
  • Heilbronner SR, Platt ML. Causal evidence of performance monitoring by neurons in posterior cingulate cortex during learning. Neuron, 2013;80(6):1384-1391.
  • Brent LJ, Heilbronner SR, Horvath JE, Gonzalez-Martinez J, Ruiz-Lambides A, Robinson AG, Skene JH, Platt ML. Genetic origins of social networks in rhesus macaques. Sci Rep. 2013;3:1042.

Current Graduate Students:

Megan Monko (Neuroscience, University of Minnesota)

Adriana Cushnie (Neuroscience, University of Minnesota)

sarah