Kendrick Kay, Ph.D.

Assistant Professor, Department of Radiology

E-MAIL: [email protected]


Research Interests:

The goal of the lab is to understand how the human brain represents visual images and makes perceptual decisions about these images. We use a combined experimental and computational approach that seeks to develop models that characterize the stimulus transformations perfomed by the brain. Our primary measurement technique is functional magnetic resonance imaging (fMRI), which is ideally suited to identify these transformations, given its excellent spatial resolution and ability to monitor activity across the numerous areas of visual cortex. Recent increases in magnetic field strength (10.5T) are expected to provide substantial gains in spatial resolution and signal-to-noise ratio, enabling the acquisition of large, high-quality datasets that can be used to resolve functional differences across cortical layers and columns. In the spirit of reproducible research, we make freely available tools and resources (e.g. experiments, data, code) developed in the course of our research.

Lab Website: http://cvnlab.net


Selected Publications:

(For a comprehensive list of recent publications, refer to PubMed, a service provided by the National Library of Medicine.)

  • Roth ZN, Kay K, Merriam EP. Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1. Nat Commun. 2022 Oct 29;13(1):6469.
  • Gu Z, Jamison KW, Khosla M, Allen EJ, Wu Y, St-Yves G, Naselaris T, Kay K, Sabuncu MR, Kuceyeski A. NeuroGen: Activation optimized image synthesis for discovery neuroscience. Neuroimage. 2022 Feb 15;247:118812.
  • Arcaro MJ, Livingstone MS, Kay KN, Weiner KS. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Exp Brain Res. 2022 May;240(5):1459-1469.
  • Allen EJ, St-Yves G, Wu Y, Breedlove JL, Prince JS, Dowdle LT, Nau M, Caron B, Pestilli F, Charest I, Hutchinson JB, Naselaris T, Kay K. A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat Neurosci. 2022 Jan;25(1):116-126.
  • Zhao YJ, Kay KN, Tian Y, Ku Y. Sensory recruitment revisited: Ipsilateral V1 involved in visual working memory. Cereb Cortex. 2021 Sep 2:bhab300.
  • Poltoratski S, Kay K, Finzi D, Grill-Spector K. Holistic face recognition is an emergent phenomenon of spatial processing in face-selective regions. Nat Commun. 2021 Aug 6;12(1):4745.
  • Kay K, Jamison KW, Zhang RY, Uğurbil K. A temporal decomposition method for identifying venous effects in task-based fMRI. Nat Methods. 2020 Oct;17(10):1033-1039.
  • Zhang RY, Kay K. Flexible top-down modulation in human ventral temporal cortex. Neuroimage. 2020 Sep;218:116964.
  • Zhang RY, Wei XX, Kay K. Understanding multivariate brain activity: Evaluating the effect of voxelwise noise correlations on population codes in functional magnetic resonance imaging. PLoS Comput Biol. 2020 Aug 18;16(8):e1008153.
  • Zhou J, Benson NC, Kay K, Winawer J. Predicting neuronal dynamics with a delayed gain control model. PLoS Comput Biol. 2019 Nov 20;15(11):e1007484.
  • Kay K, Jamison KW, Vizioli L, Zhang R, Margalit E, Ugurbil K. A critical assessment of data quality and venous effects in sub-millimeter fMRI. Kay K, Jamison KW, Vizioli L, Zhang R, Margalit E, Ugurbil K. A critical assessment of data quality and venous effects in sub-millimeter fMRI. Neuroimage. 2019;189:847-869.
  • Benson NC, Jamison KW, Arcaro MJ, Vu AT, Glasser MF, Coalson TS, Van Essen DC, Yacoub E, Ugurbil K, Winawer J, Kay K. The human connectome project 7 tesla retinotopy dataset: Description and population receptive field analysis. J Vis. 2018 Dec 3;18(13):23. doi: 10.1167/18.13.23.
  • Kupers ER, Wang HX, Amano K, Kay KN, Heeger DJ, Winawer J. A non-invasive, quantitative study of broadband spectral responses in human visual cortex. PLoS One. 2018 Mar 12;13(3):e0193107.
  • Zhou J, Benson NC, Kay K, Winawer J. Compressive temporal summation in human visual cortex. J Neurosci. 2017 Nov 30. pii: 1724-1717.
  • Kim D, Kay K, Shulman GL, Corbetta M. A new modular brain organization of the BOLD signal during natural vision. Cereb Cortex. 2017 Jul 13:1-17.
  • Kay KN. Principles for models of neural information processing. Neuroimage. 2017; pii: S1053-8119(17)30663-8.
  • Grill-Spector K, Weiner KS, Kay K, Gomez J. The functional neuroanatomy of human face perception. Annu Rev Vis Sci. 2017 Sep 15;3:167-196.
  • Weiner KS, Barnett MA, Witthoft N, Golarai G, Stigliani A, Kay KN, Gomez J, Natu VS, Amunts K, Zilles K, Grill-Spector K. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage. 2017 Apr 18. pii: S1053-8119(17)30333-6.
  • Kay KN, Yeatman JD. Bottom-up and top-down computations in word- and face-selective cortex.  Elife. 2017 Feb 22;6. pii: e22341.
  • Strappini F, Gilboa E, Pitzalis S, Kay K, McAvoy M, Nehorai A, Snyder AZ. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data. Hum Brain Mapp. 2017 Mar;38(3):1438-1459.
  • Vu AT, Phillips JS, Kay K, Phillips ME, Johnson MR, Shinkareva SV, Tubridy S, Millin R, Grossman M, Gureckis T, Bhattacharyya R, Yacoub E. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment. Cogn Neuropsychol. 2016 May-Jun;33(3-4):265-75.
  • Naselaris T, Kay KN. Resolving ambiguities of MVPA using explicit models of representation. Trends Cogn Sci. 2015 Oct;19(10):551-4.
  • Kay KN, Weiner KS, Grill-Spector K. Attention reduces spatial uncertainty in human ventral temporal cortex. Curr Biol. 2015 Mar 2;25(5):595-600.
Picture of Kendrick Kay