Jocelyn Richard, Ph.D.

Assistant Professor, Department of Neuroscience


E-MAIL: [email protected]
Advising Statement

Research Interests:

Drug and alcohol abuse presents major and increasing costs to individuals across society. Abuse of alcohol and other drugs has been suggested to alter multiple aspects of motivation and affect related processes. These changes include alterations in the motivational value of cues in the environment, exaggerated negative affect and anxiety, and disruption of top-down cognitive control. Improvements in our long-term treatment of drug and alcohol addiction require major advancements of our understanding of the underlying neural mechanisms of these processes. The central goal of the Richard lab is to understand the neural signaling and circuit mechanisms that drive motivation, affect and decision-making in both healthy brains and in models of addiction. 

Cues that have been paired with rewards like food and drugs can gain the ability to induce motivational states like craving, and to invigorate reward-seeking behaviors. A major objective of the Richard lab is to identify neural populations that encode the motivational value of cues, and determine the neural building blocks of this encoding. We use in vivo electrophysiology in awake, behaving rats to identify neurons in the brain that encode the motivational value of cues, and to compare the timing of these representations across brain regions in order to constrain and develop circuit hypotheses. We then characterize these representations in specific neural circuit projection populations using genetically-encoded fluorescent activity indicators. Finally, we can test the role of specific neural populations in driving downstream representations of motivation using optogenetics. Another major goal of the Richard lab is to determine how alcohol and other drugs recruit and disrupt adaptive brain mechanisms underlying motivation and affect. To do so, we are investigating alterations in activity patterns in neural circuits that represent motivation, value and choice in models of alcohol abuse and exposure.

Selected Publications:

  • Palmer D, Cayton CA, Scott A, Lin I, Newell B, Paulson A, Weberg M, Richard JM. Ventral pallidum neurons projecting to the ventral tegmental area reinforce but do not invigorate reward-seeking behavior. Cell Rep. 2024 Jan 8;43(1):113669. 
  • Sood A, Richard JM. Sex-biased effects of outcome devaluation by sensory-specific satiety on Pavlovian-conditioned behavior. Front Behav Neurosci. 2023 Oct 4;17:1259003.
  • Scott A, Palmer D, Newell B, Lin I, Cayton CA, Paulson A, Remde P, Richard JM. Ventral pallidal GABAergic neuron calcium activity encodes cue-driven reward seeking and persists in the absence of reward delivery. J Neurosci. 2023 Jul 12;43(28):5191-5203.
  • Carpio MJ, Gao R, Wooner E, Cayton CA, Richard JM. Alcohol availability during withdrawal gates the impact of alcohol vapor exposure on responses to alcohol cues. Psychopharmacology (Berl). 2022 Oct;239(10):3103-3116.
  • Ottenheimer DJ, Wang K, Tong X, Fraser KM, Richard JM, Janak PH. Reward activity in ventral pallidum tracks satiety-sensitive preference and drives choice behavior. Sci Adv. 2020 Nov 4;6(45):eabc9321.
  • Ottenheimer DJ, Bari BA, Sutlief E, Fraser KM, Kim TH, Richard JM, Cohen JY, Janak PH. A quantitative reward prediction error signal in the ventral pallidum. Nat Neurosci. 2020 Oct;23(10):1267-1276.
  • Vandaele Y, Mahajan NR, Ottenheimer DJ, Richard JM, Mysore SP, Janak PH. Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. Elife. 2019 Oct 17;8:e49536.
  • Ottenheimer DJ, Wang K, Haimbaugh A, Janak PH, Richard JM. Recruitment and disruption of ventral pallidal cue encoding during alcohol seeking. Eur J Neurosci. 2019;50(9):3428-3444.
  • Richard JM. Female rodents yield new insights into compulsive alcohol use and the impact of dependence. Alcohol Clin Exp Res. 2019;43(8):1648-1650.
  • Richard JM. Metabotropic glutamate receptor 5 signaling and appetitive Pavlovian behavior: implications for the treatment of addiction. Neuropsychopharmacology. 2019;44(9):1516-1517.
  • Ottenheimer D, Richard JM, Janak PH. Ventral pallidum encodes relative reward value earlier and more robustly than nucleus accumbens. Nat Commun. 2018;9:4350.  
  • Saunders BT, Richard JM, Margolis EB, Janak PH. Dopamine neurons create Pavlovian conditioned stimuli with circuit defined motivational properties. Nat Neurosci. 2018;21:1072-1083.
  • Richard JM, Stout N, Acs D, Janak PH. Ventral pallidal encoding of reward seeking depends on the underlying associative structure. eLife. 2018;7:e33107. 
  • Richard JM, Ambroggi F, Janak PH, Fields HL. Ventral pallidum neurons encode incentive value and promote cue-elicited instrumental actions. Neuron. 2016;90:1165-1173. 
  • Richard JM, Fields HL. Mu-opioid receptor activation in the medial shell of nucleus accumbens promotes alcohol consumption, self-administration and cue-induced reinstatement. Neuropharmacology. 2016;108:14-23.

Current Student(s):

Past Students:

Dakota Palmer (Neuroscience, University of Minnesota)

Alexandra Scott (Neuroscience, University of Minnesota)


Picture of Jocelyn Richard