Silvia Mangia, Ph.D.
E-MAIL: [email protected]
Research Interests:
My professional goal is the exploration, refinement and invention of methodological tools that provide quantitative measures of tissue metabolism, structure, and function in vivo. I mainly focus on developing methods that will advance our understanding of the brain and have used these methods to identify the impact of diseases on cerebral metabolism, structure, and function in humans.
My studies of functional magnetic resonance spectroscopy (fMRS) at ultra-high magnetic have allowed, for the first time, the detection of changes in concentration of metabolites with exceptional sensitivity and reliability in the activated human cortex. fMRS has a profound impact on the understanding of the metabolic interactions involved in neuronal activity and can shed new light into the mechanisms of the chemical interactions necessary to support the energy demand involved in neuronal processing. Currently my lab is using fMRS to measure neurochemical concentrations during functional paradigms that increase neuronal inhibition processes. The results of this research will be critical for our basic understanding of overall brain function and for understanding and monitoring brain disorders for which inhibition processes are compromised, such as Parkinson’s disease, epilepsy, schizophrenia, etc. We are using fMRS during altered physiological conditions such as hypoxia, in conditions of substance abuse such as chronic smoking, and after neuromodulation intervention with Transcranial Magnetic Stimulation (TMS).
I have extensive interests and expertise in other magnetic resonance imaging (MRI) methodologies such as perfusion-MRI with arterial spin labeling (ASL), and blood-oxygenation-level-dependent (BOLD) functional MRI. With these methodologies, we are examining the impact of diabetes and recurrent iatrogenic hypoglycemia on brain function; additionally, we aim at establishing whether the neurovascular coupling in diabetes is impaired. Focused on innovation and translational research, we are developing and utilizing a variety of novel MR methods based on rotating frame relaxations and magnetization transfer to identify pathological and neurodegenerative processes in brain diseases like multiple sclerosis and Parkinson’s disease.
Selected Publications:
(For a comprehensive list of recent publications, refer to PubMed, a service provided by the National Library of Medicine.)
- Rothman DL, Dienel GA, Behar KL, Hyder F, DiNuzzo M, Giove F, Mangia S. Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. J Cereb Blood Flow Metab. 2022 May;42(5):844-860.
- Filip P, Burdová K, Valenta Z, Jech R, Kokošová V, Baláž M, Mangia S, Michaeli S, Bareš M, Vojtíšek L. Tremor associated with similar structural networks in Parkinson's disease and essential tremor. Parkinsonism Relat Disord. 2021 Dec 23;95:28-34.
- Laakso H, Lehto LJ, Paasonen J, Salo R, Canna A, Lavrov I, Michaeli S, Gröhn O, Mangia S. Spinal cord fMRI with MB-SWIFT for assessing epidural spinal cord stimulation in rats. Magn Reson Med. 2021 Oct;86(4):2137-2145.
- Filip P, Dufek M, Mangia S, Michaeli S, Bareš M, Schwarz D, Rektor I, Vojtíšek L. Alterations in sensorimotor and mesiotemporal cortices and diffuse white matter changes in primary progressive multiple sclerosis detected by adiabatic relaxometry. Front Neurosci. 2021 Sep 14;15:711067.
- Canna A, Lehto LJ, Wu L, Sang S, Laakso H, Ma J, Filip P, Zhang Y, Gröhn O, Esposito F, Chen CC, Lavrov I, Michaeli S, Mangia S. Brain fMRI during orientation selective epidural spinal cord stimulation. Sci Rep. 2021 Mar 9;11(1):5504.
- Filip P, Canna A, Moheet A, Bednarik P, Grohn H, Li X, Kumar AF, Olawsky E, Eberly LE, Seaquist ER, Mangia S. Structural alterations in deep brain structures in type 1 diabetes. Diabetes. 2020 Aug 24:db191100.
- Moraschi M, Mascali D, Tommasin S, Gili T, Hassan IE, Fratini M, DiNuzzo M, Wise RG, Mangia S, Macaluso E, Giove F. Brain network modularity during a sustained working-memory task. Front Physiol. 2020 May 8;11:422.
- Li X, Mangia S, Lee JH, Bai R, Springer CS Jr. NMR shutter-speed elucidates apparent population inversion of 1H2O signals due to active transmembrane water cycling. Magn Reson Med. 2019 Jul;82(1):411-424.
- Filip P, Svatkova A, Carpenter AF, Eberly LE, Nestrasil I, Nissi MJ, Michaeli S, Mangia S. Rotating frame MRI relaxations as markers of diffuse white matter abnormalities in multiple sclerosis. Neuroimage Clin. 2020 Mar 2;26:102234.
- Gröhn H, Gillick BT, Tkáč I, Bednařík P, Mascali D, Deelchand DK, Michaeli S, Meekins GD, Leffler-McCabe MJ, MacKinnon CD, Eberly LE, Mangia S. Influence of repetitive transcranial magnetic stimulation on human neurochemistry and functional connectivity: A pilot MRI/MRS study at 7 T. Front Neurosci. 2019 Nov 27;13:1260.
- Mascali D, DiNuzzo M, Serra L, Mangia S, Maraviglia B, Bozzali M, Giove F. Disruption of semantic network in mild Alzheimer's disease revealed by resting-State fMRI. Neuroscience. 2018 Feb 10;371:38-48.
- Bednarik P, Moheet AA, Grohn H, Kumar AF, Eberly LE, Seaquist ER, Mangia S. Type 1 diabetes and impaired awareness of hypoglycemia are associated with reduced brain gray matter volumes. Front Neurosci. 2017 Sep 25;11:529.
- Lehto LJ, Idiyatullin D, Zhang J, Utecht L, Adriany G, Garwood M, Gröhn O, Michaeli S, Mangia S. MB-SWIFT functional MRI during deep brain stimulation in rats. Neuroimage. 2017;159:443-448.
- Bednařík P, Tkáč I, Giove F, Eberly LE, Deelchand DK, Barreto FR, Mangia S. Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex. J Cereb Blood Flow Metab. 2017 Jan 1:271678X17695291.
- Mangia S, Svatkova A, Mascali D, Nissi MJ, Burton PC, Bednarik P, Auerbach EJ, Giove F, Eberly LE, Howell MJ, Nestrasil I, Tuite PJ, Michaeli S. Multi-modal brain MRI in subjects with PD and iRBD. Front Neurosci. 2017;11:709.
- DiNuzzo M, Giove F, Maraviglia B, Mangia S. Computational flux balance analysis predicts that stimulation of energy metabolism in astrocytes and their metabolic interactions with neurons depend on uptake of K+ rather than glutamate. Neurochem Res. 2017;42(1):202-216.
- Nissi MJ, Salo E-N, Tiitu V, Liimatainen T, Michaeli S, Mangia S, Ellermann J, Nieminen MT. Multi-parametric MRI characterization of enzymatically degraded articular cartilage. J Orthop Res. 2016;34:1111-20.
- Moheet A, Mangia S, Kumar A, Tesfaye N, Eberly LE, Bai Y, Kubisiak K, Seaquist ER. Naltrexone for treatment of impaired awareness of hypoglycemia in type 1 diabetes: A randomized clinical trial. J Diabetes Complications. 2015;29:1277-82.
- Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci. 2015;1353:60-71.
- Bednařík P, Tkáč I, Giove F, DiNuzzo M, Deelchand DK, Emir UE, Eberly LE, Mangia S Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla. J Cereb Blood Flow Metab. 2015;35:601-10.
- Hakkarainen H, Sierra A, Mangia S, Garwood M, Michaeli S, Gröhn O, Liimatainen T.. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain.Brain. Magn Reson Med. 2016 Jan;75(1):161-8.
- Satzer D, DiBartolomeo C, Ritchie MM, Storino C, Liimatainen T, Hakkarainen H, Idiyatullin D, Mangia S, Michaeli S, Parr AM, Low WC. Assessment of dysmyelination with RAFFn MRI: application to murine MPS I. PLoS One. 2015 Feb 13;10(2):e0116788.
- DiNuzzo M, Giove F, Maraviglia B, Mangia S Monoaminergic control of cellular glucose utilization by glycogenolysis in neocortex and hippocampus. Neurochem Res. 2015; 40:2493–504.
- Sorce DJ, Mangia S, Liimatainen T, Garwood M, Michaeli S. Exchange-induced relaxation in the presence of a fictitious field. J Magn Reson. 2014;245:12-6.
- DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res. 2014;108:995-1012.
- Tuite PJ, Mangia S, Michaeli S. Magnetic resonance imaging (MRI) in Parkinson's disease. J Alzheimers Dis Parkinsonism. 2013 Mar 25;Suppl 1:001.
- Mangia S, Carpenter A, Tyan A, Eberly LE, Garwood M, Michaeli S. Magnetization transfer and adiabatic T1ρ reveal abnormalities in normal appearing white matter of subjects with multiple sclerosis. Mult Scler. 2014;20(8):1066-73.